A characterization of curves in Galilean 4-space $G_4$

نویسندگان

  • G. Öztürk Kocaeli University‎, ‎Art and Science Faculty‎, ‎Department of Mathematics‎, ‎Kocaeli‎, ‎Turkey.
  • İ. Kişi Kocaeli University‎, ‎Art and Science Faculty‎, ‎Department of Mathematics‎, ‎Kocaeli‎, ‎Turkey.
  • S. Büyükkütük Kocaeli University‎, ‎Art and Science Faculty‎, ‎Department of Mathematics‎, ‎Kocaeli‎, ‎Turkey.
چکیده مقاله:

‎In the present study‎, ‎we consider a regular curve in Galilean‎ ‎$4$-space $mathbb{G}_{4}$ whose position vector is written as a‎ ‎linear combination of its Frenet vectors‎. ‎We characterize such‎ ‎curves in terms of their curvature functions‎. ‎Further‎, ‎we obtain‎ ‎some results of rectifying‎, ‎constant ratio‎, ‎$T$-constant and‎ ‎$N$-constant curves in $mathbb{G}_{4}$‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The equiform differential geometry of curves in the pseudo - Galilean space ∗

In this paper the equiform differential geometry of curves in the pseudo-Galilean space G3 is introduced. Basic invariants and a moving trihedron are described. Frenet formulas are derived and the fundamental theorem of curves in equiform geometry of G3 is proved. The curves of constant curvatures are described.

متن کامل

Lagrangian Curves in a 4-dimensional affine symplectic space

Lagrangian curves in R entertain intriguing relationships with second order deformation of plane curves under the special affine group and null curves in a 3-dimensional Lorentzian space form. We provide a natural affine symplectic frame for Lagrangian curves. It allows us to classify Lagrangrian curves with constant symplectic curvatures, to construct a class of Lagrangian tori in R and determ...

متن کامل

tragic contradictions: a comparative study of characterization in eugene o’neill’s long day’s journey into night and mahmud dowlatabadi’s tangna

در طی چند دهه ی اخیر، مفهوم «تراژدی» و «قهرمان تراژدی» توجهی روزافرون را تقریباً در تمام حوزه های نقد ادبی به خود معطوف کرده است. برخی نظیر ارسطو، نیچه، و آرتور میلر به بازخوانی آن پرداخته و برخی دیگر نظیر سارتر، استریندبرگ، یوجین اُنیل، برتولت برشت، و آنتونین آرتود به افزودن ابعاد نوینی به این مبحث همت گماشته اند. آنچه قهرمان تراژدی مدرن را از مفهوم کلاسیک آن متمایز می کند نه لغزش تراژیک متداول ...

On the Quaternionic Curves in the Semi-Euclidean Space E_4_2

In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.

متن کامل

Classification of Factorable Surfaces in the Pseudo-galilean Space

In this paper, we introduce the factorable surfaces in the pseudo-Galilean space G3 and completely classify such surfaces with null Gaussian and mean curvature. Also, in a special case, we investigate the factorable surfaces which fulfill the condition that the ratio of the Gaussian curvature and the mean curvature is constant in G3.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 43  شماره 3

صفحات  771- 780

تاریخ انتشار 2017-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023